Climate Dynamics (2026) 64:51
https://doi.org/10.1007/500382-025-08029-4

®

Check for
updates

Ocean mixed-layer damping and air-sea coupling modulate
multidecadal spectral selectivity in the North Atlantic

Hongyuan Zhao' - Jianping Li'?

Received: 31 May 2025 / Accepted: 28 December 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2026

Abstract

The stochastic climate model successfully predicts the red spectrum characteristic in climate variability, yet it fails to
account for the specific frequency preference such as the Atlantic Multidecadal Oscillation (AMO). This study reveals the
mechanism of frequency-selective amplification driven by stochastic forcings. Using a linear feedback model, we demon-
strate that the oceanic damping effect (modulated by mixed layer depth, wind speed and latent heat sensitivity) acts as a
frequency filter, converting broadband stochastic atmospheric forcings into low-frequency responses. Extending to a two-
dimensional system, we construct an oscillator driven by stochastic forcing, wherein specific low-frequency components
are amplified through ocean—atmosphere coupling. Analytical solutions link the spectral peak to the dynamical parameters,
which are determined by the system’s coupling and feedback process. Applied to the North Atlantic, this framework
explains (1) the multidecadal timescale preference via ocean damping effect and (2) North Atlantic Oscillation-AMO
transitions through stochastically forced oscillation. By resolving dynamics between stochastic forcing and deterministic
responses, our results advance understanding of the origins of climatic quasi-periodicity.
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1 Introduction et al. 2016, 2019). The natural multidecadal variability

of the AMOC involves feedbacks of the density effect

The Atlantic Multidecadal Oscillation (AMO) is char-
acterized by basin-scale sea surface temperature (SST)
anomalies with a quasi-periodicity of 60—-80 years (Kerr
2000; Schlesinger and Ramankutty 1994). The physical
origin of the AMO has long been debated. From the per-
spective of deterministic theory, the multidecadal vari-
ability comes from oceanic internal oscillations. Many
explanations identify the driver of the AMO as the Atlan-
tic Meridional Overturning Circulation (AMOC) (Zhang
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of salinity on deep convection, surface salinity transport
and the Arctic (Lozier et al. 2012; Wei et al. 2022).

The stochastic forcing is also suggested as the genera-
tion mechanism for decadal variability (Liu 2012). The
stochastic climate theory (Hasselmann 1976; Frankig-
noul and Hasselmann 1977) describes the slow climate
components as Brownian integrators of fast atmospheric
noise. The cumulative integration of white noise forc-
ing by high-inertia subsystems (e.g., ocean) generates
a red spectrum. The AMO can emerge in slab-ocean
models without the role of ocean circulation, suggest-
ing that the AMO is the response to stochastic forcing
from the mid-latitude atmospheric circulation (Clement
et al. 2015; Cane et al. 2017). However, the assumptions
of the stochastic model generally ignore the frequency
selectivity of the system. Understanding the mechanisms
underlying the preferred timescale is crucial for under-
standing the quasi-periodic properties of low-frequency
climate variability (Pivotti and Anderson 2021). Further-
more, the deterministic and stochastic dynamics can also
be combined in an integrated framework. It is suggested
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that though the AMO is from the ocean's internal modes
rather than being directly driven by the atmosphere, it
still requires excitation by atmospheric noise (Frank-
combe et al. 2009).

The atmosphere over the North Atlantic exhibits mul-
tidecadal variability, such as the North Atlantic Oscilla-
tion (NAO)—the dominant atmospheric dipole mode in
this region, which is reported to have multidecadal spec-
trum peak (Li and Wang 2003; Sun et al. 2015; Zhao et al.
2024a, b). Treating the forcing as purely stochastic noise
(Zhao et al. 2020; Clement et al. 2015) ignores the pres-
ence of such low-frequency signals in the atmosphere.
Frankcombe et al. (2009) revealed that noise forcing with
spatiotemporal coherence (e.g., mimicking the NAO) sig-
nificantly amplifies the internal mode’s amplitude. Some
studies consider coupled atmosphere—ocean feedbacks.
Observational and modeling studies reveal a delayed
response: the NAO forces AMOC adjustments through
wind-driven transport and heat fluxes (Delworth and
Greatbatch 2000; Eden and Jung 2001; Alvarez-Garcia
et al. 2008), influencing AMO phases with a 15-20 year
lag (Delworth et al. 2017; Li et al. 2013). Then the AMO
modulates the multidecadal variability of the NAO
through its conversion to the North Atlantic Tripole (NAT)
mode (Sun et al. 2015; Alvarez-Garcia et al. 2008) and
stratosphere-troposphere coupling (Omrani et al. 2022),
exerting delayed negative feedback on the NAO with a
lag of 15-20 years. A multidecadal loop is constructed
by Sun et al. (2015):--- — NAO" (positive NAO phase)
— AMO"— NAO — AMO - --. While empirical mod-
els successfully replicate this delayed oscillator behavior
through parameter tuning, the observed 15-20 year delay
and spectra peak lacks explicit linkage to the inherent
properties of the ocean or the air—sea coupling process
strength.

In this paper, we describe a mechanistic framework to
resolve the limitations above. Through observation data
and simplified models, we analyze how the frequency
selectivity (the preferred timescale) is shaped by intrin-
sic dynamics of the air-sea system in the North Atlantic.
Section 2 gives the data and methods used in this paper.
Section 3 analyses the filtered SST response at low fre-
quency in the linear feedback stochastic model and its
regional specificity. In Sect. 4, we constructed an air-sea
coupled model with stochastic forcing and linear feed-
back. The spectrum character of the model is analyzed
and we applied it to the NAO-AMO coupled oscillation.
Section 5 gives the summary and discussion.
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2 Data and methods
2.1 Data and index definition

The sea level pressure (SLP) data is from the HadSLP2
dataset (Allan and Ansell 2006). The SST data is from the
Extended Reconstructed SST Version 5 dataset (Huang et
al. 2017). The mixed layer depth is from the NCEP Global
Ocean Data Assimilation System (GODAS) dataset (Der-
ber and Rosati 1989). The mixed layer depth is defined as
the depth where the temperature difference from the SST
is less than 0.8 K. The 10 m wind data is from the NCEP-
NCAR Reanalysis 1 dataset (Kalnay et al. 1996). The AMO
index (AMOI) is defined as the area-weighted average of
the detrended SST anomaly in the North Atlantic domain
(75°=7.5°W, 0°—60°N). The NAO index (NAOI) is defined
as the difference between the normalized SLP zonally aver-
aged from 80°W to 30°E at 35°N and 65°N (Li and Wang
2003).

2.2 Linear damping model and estimation of the
SST damping coefficient

The linear feedback model with stochastic noise is:

W= ag(t) - My, (1)

where y is the model response, £ (¢) is the input forcing, set
as white noise, « is the amplitude coefficient and A = % is

the linear damping coefficient. A positive (negative) A indi-
cates a negative (positive) feedback effect.

When considering y as the SST anomalies, we calculated
the damping coefficient based on the classical parameteriza-
tion scheme of turbulent heat flux. Here are the bulk transfer
formulas of the surface sensible heat flux (Q sz ) and latent
heat flux (Qrg).

Qsn = pC3Cs [U|(T, - )

Qru = p'LCL ‘ﬁ’ (ds — qa)

where T is the SST, T, is the air temperature, g5 is the
saturation specific humidity at SST, and ¢, is the air specific
humidity. The ocean damping coefficient of sensible heat
flux Agp is calculated following Frankignoul and Hassel-
mann (1977):

pac;jcs]m
pr},”h ’

1 0Qsu _
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where h is the mixed layer depth (m), and T is the 10 m
wind speed (m s!). The other constant variables are shown
in Table 1.

Following Frankignoul and Hasselmann (1977) and
Frankignoul et al. (1998), the ocean damping coefficient of
latent heat flux Az g is estimated from

ﬁ‘ qsL

1 0QLH paLOL ‘ﬁ‘ aqs paLCL
peCuh oT, pvCuh 0T, p"Cyh R,T2

)\LH =

Therefore, the damping caused by turbulent heat flux is the
sum of sensible heat damping and latent heat damping.

a|g 5
Aturb = AsH + Ao = p’;é,f‘h (cgcs + s ) . 2)

p

where the unit of A, calculated from the raw data is s~ .

In the subsequent analysis, when reporting the A value, we
converted the unit to year ! for clarity. We use the annual
climatology of wind speed, mixed layer depth and SLP from
the raw monthly data in 19802015 to calculate the A.

2.3 Numerical integration of stochastic differential
equations

Both the linear feedback and the two-component coupling
model used in this paper contain stochastic terms driven by
Wiener processes. The stochastic differential equations were
integrated using the Euler—Maruyama scheme (Higham
2001), where deterministic terms are advanced with a time
step At, and stochastic increments are generated as inde-
pendent Gaussian variables with zero mean and variance
At. Specifically, the temporal differential of a variable X is:

dX = fi(X,t)dt + fo (X, t)dW (1),

Table 1 Constant variables used in the parameterization

Symbol Description Value
o Density of seawater 1025 kg m™>
w Specific heat of seawater at constant 4020 J kg!
Cp o
pressure K
° Density of air 1.29kgm™
ce Specific heat of air at constant pressure 11(0*?4 Jkg!
c Bulk transfer coefficient for sensible 1.0*107°
s
heat flux
c Bulk transfer coefficient for latent heat  1.35 * 1073
L flux
L Latent heat of evaporation 2.5%1007
kg!
R Specific gas constant for water vapor 461 Jkg!
v K*l

where f1(X,t)dt is the deterministic term and
f2 (X, t)dW (t) is the stochastic term. W (¢) is the stan-
dard Wiener process and dW (t) ~ N(0, dt). The discrete
numerical equation is:

Xnt1 = X + f1 (X, tn) At + fo (X, t,) AW,

where At is the time step and
AW, =W (tps1) — W (t,) ~ N(0,At). The Wiener
increments AW,, are assumed independent between time
steps.

3 Spectral selectivity in the linear damping
model

From Hasselmann (1976), the power spectrum density
(PSD) of response y of Eq. (1) is

G W)= 3)

where F'(w) is the spectrum of the forcing and w is the
angular frequency. From this equation,5 = % determines
the frequency response of y to the forcing. This response
function describes the behavior of a low-pass filter. Here,
the half-power point w, = % is defined as the cutoff fre-

quency of this low-pass frequency band. For frequencies
lower (higher) than w,, the system amplifies and maintains
(attenuates and smoothens) them.

Figure la and b show an example of 5 =5 to demon-
strate the spectral characteristics. Figure la gives the
spectrum of the input with ideal flat power and the corre-
sponding response G (w). The response power is amplified
at low frequencies and attenuated at high frequencies. We
further calculate a numerical example with an integration
time of 7=5000 (dimensionless time unit) and a time step
size At = 0.1. Figure 1b shows the spectrum of the artificial
white noise (random numbers of a normal distribution) and
the corresponding response. Notably, the white noise with
finite length exhibits non-flat spectral characteristics. For
a single realization, the model amplifies the subtle spectral
structures in the input, converting broadband forcing into
a response with spectral peaks. This indicates that the low
frequency response arises from both theoretical response
function and the weak spectral peak in the forcing. Fig-
ure lc give the response PSD under different time scales.
The cutoff frequency decreases as [ increases, and the cor-
responding low-frequency response also strengthens. This
demonstrates the strong control effect of /5 on the spectral
characteristics of the response.

@ Springer
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Fig. 1 Spectral characteristics of noise-driven responses in the linear
feedback model. a Spectrum of ideal white noise (black solid line)
and the analytical response spectrum from the linear feedback model
(red solid line). b Spectrum of artificially generated white noise forc-
ing (black solid line) and its response from the linear feedback model
(red solid line). The red dashed lines in a and b indicate the w. = %
The PSD was computed by Fourier-transforming the sample autocor-
relation and the maximum lag m=n/5 (n is the number of data points).
¢ Spectrum of the response to artificially generated white noise forc-
ing from the linear feedback model for § values ranging from 1071
to 103. The values of the power spectrum have been logarithmically
processed. The power spectrum is plotted on a logarithmic scale (base
10). The blue solid line indicates the w. = 1/8
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The linear feedback model response G(w) reveals that
the amplified frequency band is controlled by the damping
coefficient \. Here, we further analyze the spatial heteroge-
neity of the timescale of SST variability by estimating the
A value of ocean. The damping term A in the SST tendency
equation represents the collective dissipation of thermal
anomalies through air-sea heat fluxes, radiative cooling
and oceanic dynamics (Frankignoul 1985; Gunnarson et al.
2024). Here, we calculated the turbulent heat flux damping
coefficient (sum of latent and sensible damping) using the
parameterization scheme (Eq. 2) of Frankignoul and Has-
selmann (1977) and Frankignoul et al. (1998), as detailed
in Sect. 2.2.

Figure 2a gives the Ay, using the parametrization. For
comparison, we also calculated the linear damping coeffi-
cient using the autocorrelation of the grid-point SST series
(A = —In£ZL, where p; is the lag-1 autocorrelation and
At = lyear) in Fig. 2b. The A values obtained by both
methods show high-value areas at subpolar regions (sub-
polar North Atlantic and Southern Ocean) and low-value
areas at low latitudes (Pacific cold tongue and). The cutoff

2

period, given by Tc = 5= = 2w, is shown in Fig. 2c.

It corresponds to the lower period limit of the low-pass
response. This period represents the typical time scale of cli-
mate fluctuations that can be effectively maintained by the
thermal inertia of the ocean mixed layer and the turbulent
damping. In regions with lower X\ values, such as the sub-
polar North Atlantic, sub-polar North Pacific and Southern
Ocean, the corresponding 7. at the half-power point is lon-
ger. The T, in the subpolar North Atlantic is particularly
long with a value of 50 years, suggesting that it acts as a
filter, favoring the multidecadal variability.

To compare the T, with the characteristic timescale of
SST, we use a Gaussian lowpass filter with an 11-year win-
dow to extract the decadal variance of SST at each grid
point (Fig. 2d). The decadal variance in the subpolar regions
is also large, especially in the North Atlantic Ocean, where
the AMO, an important multidecadal mode in the ocean, is
located. These results reveal that the ocean damping coef-
ficient helps explain the timescale of SST variability.

To further investigate the dominant influencing factors of
the spatial distribution of A\¢,,-5, we examined the variables
with spatial heterogeneity in parameterization (Fig. 3). The
maximum values of mixed layer depth are observed in the
North Atlantic, North Pacific, and Southern Ocean (Fig. 3a)
and is highly similar to the distribution of 7;. This implies
that the subpolar regions have a higher heat capacity, which
influences the time scale of variability. The 10 m wind speed
is lower in the subpolar North Atlantic and North Pacific
(Fig. 3b), thus limiting the intensity of turbulent heat flux.
Due to the nonlinear variation of saturated vapor pressure
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Fig.2 a Ocean damping coefficient

calculated from the turbulent heat
flux parameterization. b Ocean
damping coefficient calculated
from the autocorrelation coefficient
of the grid-point SST. ¢ The cut-off
period Af:;b from turbulent heat
flux parameterization. d Decadal
variance during 1900-2015 of

80°E 120°E 180°

(c) Cut-off period 2a/A,, , from parameterization (year)
L h L 3

120°W 60°E 120°E 180° 120°W B80°W 0°

global annual mean SST. The
climatological period for panels a,
b and ¢ is 1980-2015

80°E 120°E

Oeg
Ly
(Fig. 3c). Therefore, the latent heat damping is weaker in
the subpolar North Atlantic, subpolar North Pacific, and the

Southern Ocean, but stronger in the tropics.

with temperature is much smaller in the colder regions

In summary, in the sub-polar region of the North Atlan-
tic, deeper mixed layers enhance heat capacity and reduce
the efficacy of surface heat flux damping (Frankignoul
and Hasselmann 1977; Deser et al. 2010), prolonging SST
anomaly persistence. Additionally, the lower surface wind
speed leads to weaker surface turbulent heat exchange, and
the lower SST results in a lower latent heat damping than
areas of higher temperature. These factors increase /3, lower
we, and extend the oscillation period, thereby shaping the
multidecadal variability preference of this region.

4 Spectral selectivity in a two-component
coupled model with stochastic forcing

Section 3 demonstrates that stochastic forcing (e.g., synop-
tic weather noise) can induce amplification at low frequency
bands of the response spectrum. However, this unidirec-
tional forcing-response framework neglects bidirectional
feedback between oceanic and atmospheric variability,
which is a critical climate dynamic. In reality, low-frequency
SST anomalies (response) modulate atmospheric circulation
(forcing) through mechanisms such as surface heat fluxes
and planetary wave propagation (Deser et al. 2010). Fur-
thermore, it is suggested that stochastic forcing from the
ocean can also affect the atmosphere, particularly enhancing
the multidecadal variability (Tao et al. 2023). In the linear
damping model, the w, controlled by 3 merely reflects the
upper limit of the characteristic frequency band (approxi-
mately 50 years in the North Atlantic) to a certain extent,
and cannot explain the formation of the spectral peaks—a
key signature of coupled oscillations like the AMO-NAO
system.

120°E 180° 120°W 80°W 0°

4.1 A coupled model with stochastic forcing

Here we further consider the idea of a two-dimensional cou-
pled model with stochastic forcing. The white noise forcing
is added into the coupled system to explore the behavior
of its oscillation characteristics. The equations of the model
are:

r=zs+&
Yy=Ys+ fy

d

d$ts = agYs + kz&y — by “4)
dy

dts = ays + ky&e — byy

where = and y represent ocean and atmosphere, x, and y;
are the signal components of = and y, & and ¢, are the
stochastic perturbation of x and y, a, and a, are coupling
coefficients, and b, and b, are damping coefficients, respec-
tively. In this system, = and y consist of both signal and
noise components. The signal components, = and y,, are
driven by y and z, respectively. Essentially, this interaction
dynamics and the integration of stochastic forcing mirror
the recharge oscillator model of El Nifio-Southern Oscilla-
tion (Jin 1997; Jin et al. 2020; Zhao et al. 2024a, b).
The system can be written as:

il )= (a5 ) () )

Here, &, (oceanic stochastic perturbation) and &, (atmo-
spheric stochastic perturbation) can be assumed physi-
cally independent of each other, as they arise from different
processes such as internal turbulent mixing in the ocean
and atmospheric transient vortices. Therefore, the system
reduces to

Ts
Ys

b,
ay

—b,
ky

ks
,by

&

*b’y gy
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Fig. 3 Climatology of a mixed
layer depth, b 10 m wind speed,
and c% at local SST for the
global ocean. The climatologi-
cal period for panels a, b and ¢ is
1980-2015
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d (zy\ _ T
dt(ys)_L'(ys)—i—é.'
by  ag

where L = ( a b > and & is the noise vector. The
y y

system’s growth rate and periodicity can be analytically
determined by the eigen analysis of linear operator L (Jin
et al. 1997; Jin et al. 2020, and references therein). Solving
det (L — A\I) = 0 yields

2
= —bm +by + \/(b”” —by) +4a$ay'

The growth rate is

_batby

. ®)

A necessary condition for oscillations in the system is that
(b, — by)2 + 4aga, < 0. Therefore, the product of cou-
pling coefficients a, and a, is the key source of oscillation
generation. When a, and a, are non-zero and have oppo-
site signs, and the product is smaller than (b, — by)2 /4, the
imaginary frequency is contributed, driving the system to
generate periodic oscillations. The eigenfrequency is

b \/— (by — b§)2 — dagay ©)

If the coupling disappears (a, = 0 or a, = 0), the system
has only real roots and the oscillation ceases, degenerating
into a pure attenuation or growth mode.

Following Zhao et al. (2021), one can obtain the ana-
lytical phase relationship by substituting =, = Xe**
and y, = Ye* into the system with the stochastic terms
excluded:

Y A+b,

X Ay

where X and Y are the complex amplitude. The argument of
the ratio is exactly the phase difference ¢,_, between the x
and y: ¢y, = arg (A + by) — arg (ag). When a, is greater
than 0:

2
Gy—z = arg (by — 0 +iw) = arctan @
by — by

The time lead corresponding to the phase difference is

Ty—z = ¢y_$ . (7)
w

To investigate the fundamental oscillatory behavior of the
coupled system, we select a set of representative parameters
based on the system's intrinsic properties. For an idealized
case with mini\r?a.l_da.mping (bz — by = 0), the Eq. (5) sim-
plifies tow = Y—"""* By settinga, = 2% anda, = — 2%,
we basically set the oscillation period T = %” = 70. This
value is chosen to roughly align with the dominant multi-
decadal timescale observed in the AMO. In this preliminary
setup, we treated the noise terms with the same magnitude
as the coupling terms (az,a,) as a default assumption:
ky =2k, = —%, implying that stochastic forcing and
signal-based coupling have comparable influences on the
system. The damping coefficients were set to small positive
values (b, = 0.01,b, = 0.01) to reflect weak dissipation,
which is consistent with the discussion in Sect. 3.

Long-term numerical integration with stochastic forc-
ing reveals that the system attains a statistical equilibrium,
characterized by stationary mean and variance of key vari-
ables (Fig. 4a). Experiments where the stochastic forcing
and damping terms were removed separately showed that
the stochastic forcing acted as an energy input to maintain
the oscillation variance, while the damping term prevented
the variance from diverging.

In Fig. 4b, c, the power does not increase continuously
with frequency as it does in the linear model. There is a spec-
trum peak at a specific frequency, rather than a frequency
band. For an ideal white noise forcing with a constant power
spectrum, the system response is super-amplified at a spe-
cific frequency, which is determined by the parameters. The
lead-lag correlation shows that the x and y lead each other,
forming a coupled oscillation (Fig. 4d).

4.2 Application to the AMO-NAO oscillation and
estimation of the parameters

It has been suggested that the feedback of North Atlantic
Ocean onto the NAO is critical for the NAO spectrum peak
at the decadal frequency band (Marshall et al. 2001; Czaja
and Marshall 2000). Sun et al. (2015) introduce a model for
the quasi-periodic multidecadal variability of the NAO, as
follows:

NAO(t) ~ NAT(t)

dAMO _ ) AMO

dt B

C
~NAT(t+ 1) ~ AMO(%)

It consists of three key dynamics: the coupling relationship
between the NAO and NAT, the NAO’s forcing on the AMO

@ Springer
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(a) Simulated time series
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Fig. 4 Results of the stochastically forced coupled system. a
Numerical integrated result of x and y using the parameters

az = ke = 2, ay = ky = — 2%, by = 0.01, by, = 0.01 for the sto-

chastic coupled model. b and ¢ PSD of numerical solution of stochas-
tic coupled system with the input of artificially generated white noise.
The red and blue solid lines represent the x response and y response,
respectively. The red and blue dashed lines represent the white noise

and the oceanic conversion from the AMO to the NAT. This
leads to:

NAO (t) = —AMO(t—7).

Though the model considers the oceanic feedback on atmo-
sphere, the NAO is simply treated as a lagged correlation.
Here, to consider the accumulation of ocean forcing, we
construct an NAO-AMO coupled stochastic model as men-
tioned above:

AMO = AMO, + £6
NAO = NAO, + €4

AM
d dtO - —NAO + —gA - b—oAMO (8)
dNC‘;O - —AMO + —go - b—ANAO

The physical meanings of each parameter in the model are
as follows:
co,ca: The heat capacity of the ocean and atmosphere.
a4: The influence of the NAO, on the AM Oy, includ-
ing AMOC adjustments through wind-driven transport and
heat fluxes (Delworth and Greatbatch 2000; Eden and Jung
2001; Alvarez-Garcia et al. 2008).

@ Springer

for the x and y, respectively. The red and blue heavy lines represent
the red noise spectrum (von Storch and Zwiers 1999). The PSD was
computed by Fourier-transforming the sample autocorrelation and the
maximum lag m=300. The spectral peaks in b and ¢ is around 0.094
(=~ 2n/67) rad/year. d Lead-lag correlation between the x and the y. The
dashed lines indicate the critical value at the 0.05 significance level.
The positive lag denotes that the x variable leads the y variable

ao: The influence of the AM O, on the N AQ,, includ-
ing AMO’s conversion to the NAT mode (Sun et al. 2015;
Alvarez-Garcia et al. 2008) and stratosphere-troposphere
coupling (Omrani et al. 2022).

ka: The influence of NAO's noise component on the
AMO. It represents the synoptic scale, intraseasonal scale
and interannual scale variabilities of the NAO, which are
considered the non-signaling components.

ko: The influence of AMO's noise component on the
NAO. It represents the interannual scale variabilities of the
AMO, which are considered the non-signaling components.

bo: The damping rate of the AMO, including the SST
damping of the surface heat flux, ocean advection and ocean
entrainment dissipation.

ba: The damping rate of the NAO, such as the Rossby
wave dispersion and frictional dissipation.

The model captures the interaction of the AMO and NAO,
the linear damping process, and their noise forcing effect.
Note that the damping (bo, b4) in the coupled oscillator is
no longer the purely thermodynamic damping in the linear
slab-ocean model in Sect. 3 but reflects the coupled-system
eigenvalues. They integrate not only surface heat flux dissi-
pation but also the ocean dynamics (advection, entrainment
and gyre-scale circulation). Therefore, these parameters are
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not computed from the thermodynamic parameterization
but are determined by the effective damping rates.
Estimating these parameters is a major challenge in
enhancing the performance of this system. We employed a
numerical least-squares optimization method to determine
the parameters. The optimized parameters of the coupled
model are estimated by minimizing the root mean square
error (RMSE) between the model-simulated and observed
annual indices of the AMO and NAO over 1854-2019.

1

N
RMSE = Z AMOgim (t;) — AMOoys (£5))°

z:l

1 N
+ NAOSzm i — NAO s (tz))2

z:l

where the N is the number of years and
t;(i=12,...,N)=1854,1859,...,2019. The RMSE is
determined by the values of the parameter set.

The initial guesses for the parameters are derived
from physical and statistical methods. We use the regi-
nal average mixed layer depth 4 of the North Atlantic
to obtain co = pwcwh =126 W m~2 yr K~'. The
Z—g, (2—2, ’;—3, ’Z—i, Z—g, z—“ are estimated through simple linear
regression, respectively. The time derivative terms are dis-
cretized by using forward difference and regressed onto the
corresponding variables to obtain the regression coefficients
as the estimated values. The signal components of the AMO
and NAO are defined as the indices filtered with a 21-year
Gaussian low-pass filter and the residuals are the correspond-
ing noise components. The initial guessed parameter val-
ues obtained from the regression are ‘;Tf)‘ =0.0333Kyr~!

20 — _0.0307K"! yrt, ’57‘? =545%x10"*K yr !,

CA

ko —0.0020K ! yr~1, %o — —0.0014yr ™,
b4 — —0.0020yr~'24 = —0.0020 yr '

Abounded optimization approach was then employed: we
sampled the parameter space within adjacent ranges (except
for setting co to a fixed value due to a strong physical con-
straint) and integrated the stochastic model for each parame-
ter set. The set of parameters that minimized the RMSE was
selected as the optimal solution. This method can be viewed
as a numerical least-squares optimization. The final set of
determined parameters is: co = 12.6 W m—2 yrK—*,
aa =076 Wm 2 ks =0.88Wm2,bp =0.020 Wm 2K,
ao/ca = —0.09K tyr~' ko/ca = —0.32K~* yr—'and
ba/ca = 0.009 yr~!. Since the NAO index used here is
dimensionless, c4 is a dimensionless non-independent
parameter. Therefore, the parameters in the NAO equation
are given combined with c 4.

Figure 5 gives the observed and numerical simulated
indices using the parameters above. The coupled model
successfully captures key oscillatory characteristics of the
annual AMO and NAO, including their dominant multi-
decadal periods, phase-locked relationship (NAO leading
AMO by~ 15 years), which have been reported in previous
studies (Li et al. 2013; Sun et al. 2015; Zhao et al. 2024a,
b). The RMSE is 0.1443 K for the AMOI and 0.1508 std.
for the NAOL.

Substituting the optimized parameters into the analytical
solution (Egs. (5)—~(7) in Sect. 4.1), we obtain the growth
rate, periodicity and lead-lag relationship of the system:

o = 0.0057 year~ -1
w=0.0734 = m rad/year 9)
TAMO,—~NAO, = —18.9 year.

From this solution, it can be concluded that (1) this system
is damped (2) the model period is about 85.6 years and (3)
the NAO leading the AMO about 18.9 years. We further
conduct an integral over long periods of time, with stochas-
tic noise input. Figure 6 shows the statistical characteristics
of the integral result. The system exhibits quasi-periodicity
oscillations (Fig. 6a, b). The statistical characteristics are
consistent with those of NAO and AMO in the observational
data. The power spectrum of ocean and atmospheric vari-
ables shows peaks at low frequency (Fig. 6¢). The peak of
the power spectrum occurs around multidecadal timescale.
The atmosphere and ocean lead each other, forming coupled
oscillations (Fig. 6d). Moreover, the ocean and atmospheric
components are not perfectly orthogonal. The duration of
the atmospheric component leading the ocean is longer
than that of the oceanic component leading the atmosphere.
An asymmetric lead-lag relationship is observed with the
atmosphere leading by 20-25 years and the ocean lead-
ing by~20 years. When the lag is zero, they show a weak
negative correlation, which is also observed in NAO-AMO
lead-lag relationship (Li et al. 2013). The longer time scale
of ocean response reflects the asymmetry of their physical
properties.

5 Summary and discussion

This study investigates the mechanisms behind low-fre-
quency quasi-periodic variability in the North Atlantic air-
sea system. For the linear feedback model, the response of
oceanic components to white noise forcing demonstrates
low-pass spectrum, with significant amplification at low fre-
quencies depending on the damping time scale . Through
parametric calculations of sensible heat and latent heat, we
analyzed the spatial distribution of the damping coefficient
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Fig.5 Observational and simulated
indices of the AMO (unit: K) and
NAO (dimensionless) variability.

a The observed (blue line) and
simulated (red line) annual AMO
indices. b As in (a), but for the
NAO. Both observed indices are
smoothed with a Gaussian filter
using a 21-year running window
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and pointed out that in the North Atlantic region, the smaller
damping coefficient is an important reason for the formation
of multi-decadal frequencies. This framework emphasizes
the importance of mixed layer depth, surface wind speed
and latent heat damping sensitivity in shaping SST vari-
ability. By incorporating stochastic forcing into a two-com-
ponent coupled model, the quasi-periodic oscillations are
well simulated. The model captures power spectrum peaks
at low frequencies, indicating that the air-sea interactions
and stochastic forcings are important to maintaining oscil-
latory behavior. The stochastic coupled model simulates the
observed AMO and NAO indices well, matching observed
characteristics. The modeled power spectrum shows peaks
at multidecadal time scale.

Collectively, these results establish a mechanism that
explains the spectral selectivity of air-sea coupled dynam-
ics, as shown in Fig. 7. There are stochastic noise forcings in
the ocean and atmosphere. This stochastic noise, under the
influence of physical properties (such as ocean mixed layer
depth), can form a response with a low frequency response.
The signal components of the ocean and the atmosphere
are coupled to each other. The ocean can produce a lagged
response in the atmosphere lag ~7; and the atmosphere,
in turn, can drive the ocean with a lag~72. The ocean

@ Springer
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and atmosphere lead each other, forming a quasi-periodic
coupled oscillation, whose period is~2(7; 4+ 72). In this
framework, the stochastic forcing provides the excitation,
the coupling amplifies the characteristic frequency and the
damping helps maintaining the steady state, which together
form the spectral selectivity of the air-sea coupled system.
These frequency selectivity mechanisms describe the cli-
mate system as a spectral filter, where coupled feedbacks
impose intrinsic frequency constraints rather than merely
integrating stochastic inputs. We also emphasized the role
of the damping coefficient, which is influenced by the physi-
cal properties and climatic characteristics of the local sea
area, in shaping the frequency selectivity. It advances our
understanding of low-frequency climate variability. The
study underscores the importance of dynamic interactions
between ocean and atmosphere providing insights into the
mechanisms behind oscillatory modes like the AMO and
NAO. While studies have predominantly attributed multi-
decadal periodicity to AMOC’s advective timescales (Sun
et al. 2015; Li et al. 2025), our results reveal an alterna-
tive local-scale mechanism governed by mixed layer ther-
mal inertia and surface heat damping that actively shapes
spectral selectivity. This provides perspective to assess
future AMO changes under evolving ocean stratification.
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Fig. 6 Stochastic coupled variabil- (a)
ity across centennial to millennial 4
simulations. a Numerical solution
of 5000 years of the stochastic cou-
pled system using the parameters
from the observation. The initial
values of signal components are
set to zero. The stochastic forcing
is set to white noise. The blue and
red lines denote the atmosphere
variable and oceanic variable,
respectively. b Same as a, but for
the first 500 years. The signal com-
ponents are plotted to illustrate the
oscillation. ¢ PSD of the oceanic

1 1

1 1 1 1 1 1 1 1

(red solid line) and atmospheric -4
(blue solid line) variables in the

stochastic coupled system. The red

(blue) dashed lines are the PSD of (b)
red noise and its critical value at 3r
0.05 significance level for the oce-

anic (atmospheric) variable (von 2
Storch and Zwiers 1999). The PSD
was computed by Fourier-trans-
forming the sample autocorrelation
and the maximum lag m=2000.
The spectral peaks i1;g ¢ are around 0 Py ‘r”r b 1.‘""
0.06-0.07 (= 27/105 — 27 /90)
rad/year. d Lead-lag correlation
between the signal components

of the atmospheric and oceanic
variables. The positive lag denotes
that the ocean variable leads the
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The findings have implications beyond the North Atlantic,
offering an insight for analyzing coupled variability in other
ocean—atmosphere systems.

Our analytical framework offers a powerful process-
oriented tool for evaluating general circulation models by
deriving parameters from observational data and comparing
them against model-simulated NAO and AMO. This method
enables diagnosis of biases such as in ocean—atmosphere

coupling strength (ap) or damping timescales (co/bo)
which often underlie errors in simulated multidecadal vari-
ability. By moving beyond mere spectral comparisons to
specific processes, our approach provides feedback for
refining parameterizations (e.g., surface flux exchanges or
oceanic mixing), thereby supporting the development of
more reliable climate projections.
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Fig. 7 Schematic diagram about the ~ Atmosphere noise Maintenance of steady state
mechanism of th(? spectr.al selectiv- NAO P & Phase reversal Atmospheric
ity phenomenon in the air-sea $a s P b, damping
coupled system
Quasi-periodic oscillation
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o b %.MLD Oceanic
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Ocean noise

While the slab-ocean model successfully captures the
key spectral characteristics of the AMO variability, it only
parameterizes the net turbulent heat flux damping effect. In
reality, the effective oceanic damping is not solely controlled
by mixed-layer thermodynamics but also involves impor-
tant contributions from ocean dynamical processes (Zhang
et al. 2019). These include lateral heat advection by mean
currents and ocean gyres, entrainment due to wind-driven
mixing, and the integrated effect of mesoscale eddies. These
processes can modulate the persistence of SST anomalies
and thus the perceived damping timescale (Gunnarson et
al. 2024). Our conceptual coupled model aggregates these
effects into a single effective damping parameter, and future
studies are needed to disentangle their relative contributions.

Although the results reproduce observed variability, its
validation is restricted to case study in the North Atlantic.
The assumption of white noise forcing overlooks potential
atmospheric noises with other frequency or memory charac-
teristic that could further influence variability. Future stud-
ies could extend to other climate modes, such as the Pacific
Decadal Oscillation, and explore nonlinear feedbacks and
more complex stochastic forcings.
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