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et al. 2016, 2019). The natural multidecadal variability 
of the AMOC involves feedbacks of the density effect 
of salinity on deep convection, surface salinity transport 
and the Arctic (Lozier et al. 2012; Wei et al. 2022).

The stochastic forcing is also suggested as the genera-
tion mechanism for decadal variability (Liu 2012). The 
stochastic climate theory (Hasselmann 1976; Frankig-
noul and Hasselmann 1977) describes the slow climate 
components as Brownian integrators of fast atmospheric 
noise. The cumulative integration of white noise forc-
ing by high-inertia subsystems (e.g., ocean) generates 
a red spectrum. The AMO can emerge in slab-ocean 
models without the role of ocean circulation, suggest-
ing that the AMO is the response to stochastic forcing 
from the mid-latitude atmospheric circulation (Clement 
et al. 2015; Cane et al. 2017). However, the assumptions 
of the stochastic model generally ignore the frequency 
selectivity of the system. Understanding the mechanisms 
underlying the preferred timescale is crucial for under-
standing the quasi-periodic properties of low-frequency 
climate variability (Pivotti and Anderson 2021). Further-
more, the deterministic and stochastic dynamics can also 
be combined in an integrated framework. It is suggested 

1  Introduction

The Atlantic Multidecadal Oscillation (AMO) is char-
acterized by basin-scale sea surface temperature (SST) 
anomalies with a quasi-periodicity of 60–80 years (Kerr 
2000; Schlesinger and Ramankutty 1994). The physical 
origin of the AMO has long been debated. From the per-
spective of deterministic theory, the multidecadal vari-
ability comes from oceanic internal oscillations. Many 
explanations identify the driver of the AMO as the Atlan-
tic Meridional Overturning Circulation (AMOC) (Zhang 
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that though the AMO is from the ocean's internal modes 
rather than being directly driven by the atmosphere, it 
still requires excitation by atmospheric noise (Frank-
combe et al. 2009).

The atmosphere over the North Atlantic exhibits mul-
tidecadal variability, such as the North Atlantic Oscilla-
tion (NAO)—the dominant atmospheric dipole mode in 
this region, which is reported to have multidecadal spec-
trum peak (Li and Wang 2003; Sun et al. 2015; Zhao et al. 
2024a, b). Treating the forcing as purely stochastic noise 
(Zhao et al. 2020; Clement et al. 2015) ignores the pres-
ence of such low-frequency signals in the atmosphere. 
Frankcombe et al. (2009) revealed that noise forcing with 
spatiotemporal coherence (e.g., mimicking the NAO) sig-
nificantly amplifies the internal mode’s amplitude. Some 
studies consider coupled atmosphere–ocean feedbacks. 
Observational and modeling studies reveal a delayed 
response: the NAO forces AMOC adjustments through 
wind-driven transport and heat fluxes (Delworth and 
Greatbatch 2000; Eden and Jung 2001; Álvarez-García 
et al. 2008), influencing AMO phases with a 15–20 year 
lag (Delworth et al. 2017; Li et al. 2013). Then the AMO 
modulates the multidecadal variability of the NAO 
through its conversion to the North Atlantic Tripole (NAT) 
mode (Sun et al. 2015; Álvarez-García et al. 2008) and 
stratosphere-troposphere coupling (Omrani et al. 2022), 
exerting delayed negative feedback on the NAO with a 
lag of 15–20  years. A multidecadal loop is constructed 
by Sun et al. (2015):· · · → NAO+ (positive NAO phase) 
→ AMO+→ NAO–→ AMO–· · · . While empirical mod-
els successfully replicate this delayed oscillator behavior 
through parameter tuning, the observed 15–20 year delay 
and spectra peak lacks explicit linkage to the inherent 
properties of the ocean or the air–sea coupling process 
strength.

In this paper, we describe a mechanistic framework to 
resolve the limitations above. Through observation data 
and simplified models, we analyze how the frequency 
selectivity (the preferred timescale) is shaped by intrin-
sic dynamics of the air-sea system in the North Atlantic. 
Section 2 gives the data and methods used in this paper. 
Section 3 analyses the filtered SST response at low fre-
quency in the linear feedback stochastic model and its 
regional specificity. In Sect. 4, we constructed an air-sea 
coupled model with stochastic forcing and linear feed-
back. The spectrum character of the model is analyzed 
and we applied it to the NAO-AMO coupled oscillation. 
Section 5 gives the summary and discussion.

2  Data and methods

2.1  Data and index definition

The sea level pressure (SLP) data is from the HadSLP2 
dataset (Allan and Ansell 2006). The SST data is from the 
Extended Reconstructed SST Version 5 dataset (Huang et 
al. 2017). The mixed layer depth is from the NCEP Global 
Ocean Data Assimilation System (GODAS) dataset (Der-
ber and Rosati 1989). The mixed layer depth is defined as 
the depth where the temperature difference from the SST 
is less than 0.8 K. The 10 m wind data is from the NCEP-
NCAR Reanalysis 1 dataset (Kalnay et al. 1996). The AMO 
index (AMOI) is defined as the area-weighted average of 
the detrended SST anomaly in the North Atlantic domain 
(75°–7.5°W, 0°–60°N). The NAO index (NAOI) is defined 
as the difference between the normalized SLP zonally aver-
aged from 80°W to 30°E at 35°N and 65°N (Li and Wang 
2003).

2.2  Linear damping model and estimation of the 
SST damping coefficient

The linear feedback model with stochastic noise is:

dy
dt = αξ (t) − λy, � (1)

where y is the model response, ξ (t) is the input forcing, set 
as white noise, α is the amplitude coefficient and λ = 1

β  is 
the linear damping coefficient. A positive (negative) λ indi-
cates a negative (positive) feedback effect.

When considering y as the SST anomalies, we calculated 
the damping coefficient based on the classical parameteriza-
tion scheme of turbulent heat flux. Here are the bulk transfer 
formulas of the surface sensible heat flux (QSH ) and latent 
heat flux (QLH ).

QSH = ρaCa
p CS

∣∣∣−→U
∣∣∣ (Ts − Ta)

QLH = ρaLCL

∣∣∣−→U
∣∣∣ (qs − qa)

where Ts is the SST, Ta is the air temperature, qs is the 
saturation specific humidity at SST, and qa is the air specific 
humidity. The ocean damping coefficient of sensible heat 
flux λSH  is calculated following Frankignoul and Hassel-
mann (1977):

λSH = 1
ρwCw

p h
∂QSH

∂Ts
=

ρaCa
p CS

∣∣−→
U

∣∣
ρwCw

p h ,
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where h is the mixed layer depth (m), and 
−→
U  is the 10 m 

wind speed (m s−1). The other constant variables are shown 
in Table 1.

Following Frankignoul and Hasselmann (1977) and 
Frankignoul et al. (1998), the ocean damping coefficient of 
latent heat flux λLH  is estimated from

λLH = 1
ρwCw

p h

∂QLH

∂Ts
=

ρaLCL

∣∣∣−→U
∣∣∣

ρwCw
p h

∂qs

∂Ts
=

ρaLCL

∣∣∣−→U
∣∣∣

ρwCw
p h

qsL

RvT 2
s

.

Therefore, the damping caused by turbulent heat flux is the 
sum of sensible heat damping and latent heat damping.

λturb = λSH + λLH = ρa|U⃗|
ρwCw

p h

(
Ca

p CS + CLqsL2

RvT 2
s

)
. � (2)

where the unit of λturb calculated from the raw data is s−1. 
In the subsequent analysis, when reporting the λ value, we 
converted the unit to year−1 for clarity. We use the annual 
climatology of wind speed, mixed layer depth and SLP from 
the raw monthly data in 1980–2015 to calculate the λ.

2.3  Numerical integration of stochastic differential 
equations

Both the linear feedback and the two-component coupling 
model used in this paper contain stochastic terms driven by 
Wiener processes. The stochastic differential equations were 
integrated using the Euler–Maruyama scheme (Higham 
2001), where deterministic terms are advanced with a time 
step ∆t, and stochastic increments are generated as inde-
pendent Gaussian variables with zero mean and variance 
∆t. Specifically, the temporal differential of a variable X  is:

dX = f1 (X, t) dt + f2 (X, t) dW (t) ,

where f1 (X, t) dt is the deterministic term and 
f2 (X, t) dW (t) is the stochastic term. W (t) is the stan-
dard Wiener process and dW (t) ∼ N(0, dt). The discrete 
numerical equation is:

Xn+1 = Xn + f1 (Xn, tn) ∆t + f2 (Xn, tn) ∆Wn

where ∆t is the time step and 
∆Wn = W (tn+1) − W (tn) ∼ N(0, ∆t). The Wiener 
increments ∆Wn are assumed independent between time 
steps.

3  Spectral selectivity in the linear damping 
model

From Hasselmann (1976), the power spectrum density 
(PSD) of response y of Eq. (1) is

G (ω) = F (ω)
ω2+ 1

β2
, � (3)

where F (ω) is the spectrum of the forcing and ω is the 
angular frequency. From this equation,β = 1

λ  determines 
the frequency response of y to the forcing. This response 
function describes the behavior of a low-pass filter. Here, 
the half-power point ωc = 1

β  is defined as the cutoff fre-
quency of this low-pass frequency band. For frequencies 
lower (higher) than ωc, the system amplifies and maintains 
(attenuates and smoothens) them.

Figure 1a and b show an example of β = 5 to demon-
strate the spectral characteristics. Figure  1a gives the 
spectrum of the input with ideal flat power and the corre-
sponding response G (ω). The response power is amplified 
at low frequencies and attenuated at high frequencies. We 
further calculate a numerical example with an integration 
time of T = 5000 (dimensionless time unit) and a time step 
size ∆t = 0.1. Figure 1b shows the spectrum of the artificial 
white noise (random numbers of a normal distribution) and 
the corresponding response. Notably, the white noise with 
finite length exhibits non-flat spectral characteristics. For 
a single realization, the model amplifies the subtle spectral 
structures in the input, converting broadband forcing into 
a response with spectral peaks. This indicates that the low 
frequency response arises from both theoretical response 
function and the weak spectral peak in the forcing. Fig-
ure 1c give the response PSD under different time scales. 
The cutoff frequency decreases as β increases, and the cor-
responding low-frequency response also strengthens. This 
demonstrates the strong control effect of β on the spectral 
characteristics of the response.

Table 1  Constant variables used in the parameterization
Symbol Description Value

ρw Density of seawater 1025 kg m−3

Cw
p

Specific heat of seawater at constant 
pressure

4020 J kg−1 
K−1

ρa Density of air 1.29 kg m−3

Ca
p

Specific heat of air at constant pressure 1004 J kg−1 
K−1

CS
Bulk transfer coefficient for sensible 
heat flux

1.0 * 10−3

CL
Bulk transfer coefficient for latent heat 
flux

1.35 * 10−3

L
Latent heat of evaporation 2.5 * 106 J 

kg−1

Rv
​Specific gas constant for water vapor 461 J kg−1 

K−1
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The linear feedback model response G(ω) reveals that 
the amplified frequency band is controlled by the damping 
coefficient λ. Here, we further analyze the spatial heteroge-
neity of the timescale of SST variability by estimating the 
λ value of ocean. The damping term λ in the SST tendency 
equation represents the collective dissipation of thermal 
anomalies through air-sea heat fluxes, radiative cooling 
and oceanic dynamics (Frankignoul 1985; Gunnarson et al. 
2024). Here, we calculated the turbulent heat flux damping 
coefficient (sum of latent and sensible damping) using the 
parameterization scheme (Eq. 2) of Frankignoul and Has-
selmann (1977) and Frankignoul et al. (1998), as detailed 
in Sect. 2.2.

Figure 2a gives the λturb using the parametrization. For 
comparison, we also calculated the linear damping coeffi-
cient using the autocorrelation of the grid-point SST series 
(λ = −ln ρ1

∆t , where ρ1 is the lag-1 autocorrelation and 
∆t = 1year) in Fig.  2b. The λ values obtained by both 
methods show high-value areas at subpolar regions (sub-
polar North Atlantic and Southern Ocean) and low-value 
areas at low latitudes (Pacific cold tongue and). The cutoff 
period, given by Tc = 2π

λturb
= 2πβ, is shown in Fig.  2c. 

It corresponds to the lower period limit of the low-pass 
response. This period represents the typical time scale of cli-
mate fluctuations that can be effectively maintained by the 
thermal inertia of the ocean mixed layer and the turbulent 
damping. In regions with lower λ values, such as the sub-
polar North Atlantic, sub-polar North Pacific and Southern 
Ocean, the corresponding Tc at the half-power point is lon-
ger. The Tc in the subpolar North Atlantic is particularly 
long with a value of 50 years, suggesting that it acts as a 
filter, favoring the multidecadal variability.

To compare the Tc with the characteristic timescale of 
SST, we use a Gaussian lowpass filter with an 11-year win-
dow to extract the decadal variance of SST at each grid 
point (Fig. 2d). The decadal variance in the subpolar regions 
is also large, especially in the North Atlantic Ocean, where 
the AMO, an important multidecadal mode in the ocean, is 
located. These results reveal that the ocean damping coef-
ficient helps explain the timescale of SST variability.

To further investigate the dominant influencing factors of 
the spatial distribution of λturb, we examined the variables 
with spatial heterogeneity in parameterization (Fig. 3). The 
maximum values of mixed layer depth are observed in the 
North Atlantic, North Pacific, and Southern Ocean (Fig. 3a) 
and is highly similar to the distribution of Tc. This implies 
that the subpolar regions have a higher heat capacity, which 
influences the time scale of variability. The 10 m wind speed 
is lower in the subpolar North Atlantic and North Pacific 
(Fig. 3b), thus limiting the intensity of turbulent heat flux. 
Due to the nonlinear variation of saturated vapor pressure 

Fig. 1  Spectral characteristics of noise-driven responses in the linear 
feedback model. a Spectrum of ideal white noise (black solid line) 
and the analytical response spectrum from the linear feedback model 
(red solid line). b Spectrum of artificially generated white noise forc-
ing (black solid line) and its response from the linear feedback model 
(red solid line). The red dashed lines in a and b indicate the ωc = 1

β . 
The PSD was computed by Fourier-transforming the sample autocor-
relation and the maximum lag m = n/5 (n is the number of data points). 
c Spectrum of the response to artificially generated white noise forc-
ing from the linear feedback model for β values ranging from 10−1 
to 103. The values of the power spectrum have been logarithmically 
processed. The power spectrum is plotted on a logarithmic scale (base 
10).​ The blue solid line indicates the ωc = 1/β
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4.1  A coupled model with stochastic forcing

Here we further consider the idea of a two-dimensional cou-
pled model with stochastic forcing. The white noise forcing 
is added into the coupled system to explore the behavior 
of its oscillation characteristics. The equations of the model 
are:

x = xs + ξx

y = ys + ξy

dxs

dt
= axys + kxξy − bxx

dys

dt
= ayxs + kyξx − byy

� (4)

where x and y represent ocean and atmosphere, xs and ys 
are the signal components of x and y, ξx and ξy  are the 
stochastic perturbation of x and y, ax and ay are coupling 
coefficients, and bx and by are damping coefficients, respec-
tively. In this system, x and y consist of both signal and 
noise components. The signal components, xs and ys, are 
driven by y and x, respectively. Essentially, this interaction 
dynamics and the integration of stochastic forcing mirror 
the recharge oscillator model of El Niño-Southern Oscilla-
tion (Jin 1997; Jin et al. 2020; Zhao et al. 2024a, b).

The system can be written as:

d

dt

(
xs
ys

)
=

(
−bx ax
ay −by

) (
xs
ys

)
+

(
−bx kx
ky −by

) (
ξx
ξy

)
.

Here, ξx (oceanic stochastic perturbation) and ξy  (atmo-
spheric stochastic perturbation) can be assumed physi-
cally independent of each other, as they arise from different 
processes such as internal turbulent mixing in the ocean 
and atmospheric transient vortices. Therefore, the system 
reduces to

with temperature, ∂es

∂T  is much smaller in the colder regions 
(Fig. 3c). Therefore, the latent heat damping is weaker in 
the subpolar North Atlantic, subpolar North Pacific, and the 
Southern Ocean, but stronger in the tropics.

In summary, in the sub-polar region of the North Atlan-
tic, deeper mixed layers enhance heat capacity and reduce 
the efficacy of surface heat flux damping (Frankignoul 
and Hasselmann 1977; Deser et al. 2010), prolonging SST 
anomaly persistence. Additionally, the lower surface wind 
speed leads to weaker surface turbulent heat exchange, and 
the lower SST results in a lower latent heat damping than 
areas of higher temperature. These factors increase β, lower 
ωc, and extend the oscillation period, thereby shaping the 
multidecadal variability preference of this region.

4  Spectral selectivity in a two-component 
coupled model with stochastic forcing

Section 3 demonstrates that stochastic forcing (e.g., synop-
tic weather noise) can induce amplification at low frequency 
bands of the response spectrum. However, this unidirec-
tional forcing-response framework neglects bidirectional 
feedback between oceanic and atmospheric variability, 
which is a critical climate dynamic. In reality, low-frequency 
SST anomalies (response) modulate atmospheric circulation 
(forcing) through mechanisms such as surface heat fluxes 
and planetary wave propagation (Deser et al. 2010). Fur-
thermore, it is suggested that stochastic forcing from the 
ocean can also affect the atmosphere, particularly enhancing 
the multidecadal variability (Tao et al. 2023). In the linear 
damping model, the ωc controlled by β merely reflects the 
upper limit of the characteristic frequency band (approxi-
mately 50 years in the North Atlantic) to a certain extent, 
and cannot explain the formation of the spectral peaks—a 
key signature of coupled oscillations like the AMO-NAO 
system.

Fig. 2  a Ocean damping coefficient 
calculated from the turbulent heat 
flux parameterization. b Ocean 
damping coefficient calculated 
from the autocorrelation coefficient 
of the grid-point SST. c The cut-off 
period 2π

λturb
 from turbulent heat 

flux parameterization. d Decadal 
variance during 1900–2015 of 
global annual mean SST. The 
climatological period for panels a, 
b and c is 1980–2015
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Fig. 3  Climatology of a mixed 
layer depth, b 10 m wind speed, 
and c ∂es

∂T  at local SST for the 
global ocean. The climatologi-
cal period for panels a, b and c is 
1980–2015
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To investigate the fundamental oscillatory behavior of the 
coupled system, we select a set of representative parameters 
based on the system's intrinsic properties. For an idealized 
case with minimal damping (bx − by ≈ 0), the Eq. (5) sim-
plifies to ω =

√
−4axay

2 . By setting ax = 2π
70  and ay = − 2π

70 , 
we basically set the oscillation period T = 2π

ω = 70. This 
value is chosen to roughly align with the dominant multi-
decadal timescale observed in the AMO. In this preliminary 
setup, we treated the noise terms with the same magnitude 
as the coupling terms (ax, ay) as a default assumption: 
kx = 2π

70 , ky = − 2π
70 , implying that stochastic forcing and 

signal-based coupling have comparable influences on the 
system. The damping coefficients were set to small positive 
values (bx = 0.01, by = 0.01) to reflect weak dissipation, 
which is consistent with the discussion in Sect. 3.

Long-term numerical integration with stochastic forc-
ing reveals that the system attains a statistical equilibrium, 
characterized by stationary mean and variance of key vari-
ables (Fig.  4a). Experiments where the stochastic forcing 
and damping terms were removed separately showed that 
the stochastic forcing acted as an energy input to maintain 
the oscillation variance, while the damping term prevented 
the variance from diverging.

In Fig. 4b, c, the power does not increase continuously 
with frequency as it does in the linear model. There is a spec-
trum peak at a specific frequency, rather than a frequency 
band. For an ideal white noise forcing with a constant power 
spectrum, the system response is super-amplified at a spe-
cific frequency, which is determined by the parameters. The 
lead-lag correlation shows that the x and y lead each other, 
forming a coupled oscillation (Fig. 4d).

4.2  Application to the AMO-NAO oscillation and 
estimation of the parameters

It has been suggested that the feedback of North Atlantic 
Ocean onto the NAO is critical for the NAO spectrum peak 
at the decadal frequency band (Marshall et al. 2001; Czaja 
and Marshall 2000). Sun et al. (2015) introduce a model for 
the quasi‑periodic multidecadal variability of the NAO, as 
follows:

NAO(t) ≈ NAT (t)

C
dAMO

dt
= αNAO − AMO

β

−NAT (t + τ) ≈ AMO(t)

It consists of three key dynamics: the coupling relationship 
between the NAO and NAT, the NAO’s forcing on the AMO 

d

dt

(
xs
ys

)
= L ·

(
xs
ys

)
+ ξ.

where L =
(

−bx ax
ay −by

)
 and ξ is the noise vector. The 

system’s growth rate and periodicity can be analytically 
determined by the eigen analysis of linear operator L (Jin 
et al. 1997; Jin et al. 2020, and references therein). Solving 
det (L − λI) = 0 yields

λ = −bx + by

2
±

√
(bx − by)2 + 4axay

2
.

The growth rate is

σ = bx + by

2
� (5)

A necessary condition for oscillations in the system is that 
(bx − by)2 + 4axay < 0. Therefore, the product of cou-
pling coefficients ax and ay is the key source of oscillation 
generation. When ax and ay are non-zero and have oppo-
site signs, and the product is smaller than (bx − by)2

/4, the 
imaginary frequency is contributed, driving the system to 
generate periodic oscillations. The eigenfrequency is

ω =

√
− (bx − by)2 − 4axay

2
� (6)

If the coupling disappears (ax = 0 or ay = 0), the system 
has only real roots and the oscillation ceases, degenerating 
into a pure attenuation or growth mode.

Following Zhao et al. (2021), one can obtain the ana-
lytical phase relationship by substituting xs = Xeλt 
and ys = Y eλt into the system with the stochastic terms 
excluded:

Y

X
= λ + bx

ax

where X and Y are the complex amplitude. The argument of 
the ratio is exactly the phase difference ϕy−x between the x 
and y: ϕy−x = arg (λ + bx) − arg (ax). When a1 is greater 
than 0:

ϕy−x = arg (bx − σ + iω) = arctan
(

2ω

bx − by

)

The time lead corresponding to the phase difference is

τy−x = ϕy−x

ω
.� (7)
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aO: The influence of the AMOs on the NAOs, includ-
ing AMO’s conversion to the NAT mode (Sun et al. 2015; 
Álvarez-García et al. 2008) and stratosphere-troposphere 
coupling (Omrani et al. 2022).

kA: The influence of NAO's noise component on the 
AMO. It represents the synoptic scale, intraseasonal scale 
and interannual scale variabilities of the NAO, which are 
considered the non-signaling components.

kO: The influence of AMO's noise component on the 
NAO. It represents the interannual scale variabilities of the 
AMO, which are considered the non-signaling components.

bO: The damping rate of the AMO, including the SST 
damping of the surface heat flux, ocean advection and ocean 
entrainment dissipation.

bA: The damping rate of the NAO, such as the Rossby 
wave dispersion and frictional dissipation.

The model captures the interaction of the AMO and NAO, 
the linear damping process, and their noise forcing effect. 
Note that the damping (bO, bA) in the coupled oscillator is 
no longer the purely thermodynamic damping in the linear 
slab-ocean model in Sect. 3 but reflects the coupled-system 
eigenvalues. They integrate not only surface heat flux dissi-
pation but also the ocean dynamics (advection, entrainment 
and gyre-scale circulation). Therefore, these parameters are 

and the oceanic conversion from the AMO to the NAT. This 
leads to:

NAO (t) ≈ −AMO (t − τ) .

Though the model considers the oceanic feedback on atmo-
sphere, the NAO is simply treated as a lagged correlation. 
Here, to consider the accumulation of ocean forcing, we 
construct an NAO-AMO coupled stochastic model as men-
tioned above:

AMO = AMOs + ξO

NAO = NAOs + ξA

dAMOs

dt
= aA

cO
NAOs + kA

cO
ξA − bO

cO
AMO

dNAOs

dt
= aO

cA
AMOs + kO

cA
ξO − bA

cA
NAO

� (8)

The physical meanings of each parameter in the model are 
as follows:​

cO, cA: The heat capacity of the ocean and atmosphere.
aA: The influence of the NAOs on the​ AMOs, includ-

ing AMOC adjustments through wind-driven transport and 
heat fluxes (Delworth and Greatbatch 2000; Eden and Jung 
2001; Álvarez-García et al. 2008).

Fig.  4  Results of the stochastically forced coupled system. a 
Numerical integrated result of x and y using the parameters 
ax = kx = 2π

70 , ay = ky = − 2π
70 , bx = 0.01, by = 0.01 for the sto-

chastic coupled model. b and c PSD of numerical solution of stochas-
tic coupled system with the input of artificially generated white noise. 
The red and blue solid lines represent the x response and y response, 
respectively. The red and blue dashed lines represent the white noise 

for the x and y, respectively. The red and blue heavy lines represent 
the red noise spectrum (von Storch and Zwiers 1999). The PSD was 
computed by Fourier-transforming the sample autocorrelation and the 
maximum lag m = 300. The spectral peaks in b and c is around 0.094 
(≈ 2π/67) rad/year. d Lead-lag correlation between the x and the y. The 
dashed lines indicate the critical value at the 0.05 significance level. 
The positive lag denotes that the x variable leads the y variable
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Figure  5 gives the observed and numerical simulated 
indices using the parameters above. The coupled model 
successfully captures key oscillatory characteristics of the 
annual AMO and NAO, including their dominant multi-
decadal periods, phase-locked relationship (NAO leading 
AMO by ~ 15 years), which have been reported in previous 
studies (Li et al. 2013; Sun et al. 2015; Zhao et al. 2024a, 
b). The RMSE is 0.1443 K for the AMOI and 0.1508 std. 
for the NAOI.

Substituting the optimized parameters into the analytical 
solution (Eqs.  (5)–(7) in Sect.  4.1), we obtain the growth 
rate, periodicity and lead-lag relationship of the system:

σ = 0.0057 year−1,
ω = 0.0734 ≈ 2π

85.6 rad/year
τAMOs−NAOs

= −18.9 year.
, � (9)

From this solution, it can be concluded that (1) this system 
is damped (2) the model period is about 85.6 years and (3) 
the NAO leading the AMO about 18.9  years. We further 
conduct an integral over long periods of time, with stochas-
tic noise input. Figure 6 shows the statistical characteristics 
of the integral result. The system exhibits quasi-periodicity 
oscillations (Fig. 6a, b). The statistical characteristics are 
consistent with those of NAO and AMO in the observational 
data. The power spectrum of ocean and atmospheric vari-
ables shows peaks at low frequency (Fig. 6c). The peak of 
the power spectrum occurs around multidecadal timescale. 
The atmosphere and ocean lead each other, forming coupled 
oscillations (Fig. 6d). Moreover, the ocean and atmospheric 
components are not perfectly orthogonal. The duration of 
the atmospheric component leading the ocean is longer 
than that of the oceanic component leading the atmosphere. 
An asymmetric lead-lag relationship is observed with the 
atmosphere leading by 20–25  years and the ocean lead-
ing by ~ 20 years. When the lag is zero, they show a weak 
negative correlation, which is also observed in NAO-AMO 
lead-lag relationship (Li et al. 2013). The longer time scale 
of ocean response reflects the asymmetry of their physical 
properties.

5  Summary and discussion

This study investigates the mechanisms behind low-fre-
quency quasi-periodic variability in the North Atlantic air-
sea system. For the linear feedback model, the response of 
oceanic components to white noise forcing demonstrates 
low-pass spectrum, with significant amplification at low fre-
quencies depending on the damping time scale β. Through 
parametric calculations of sensible heat and latent heat, we 
analyzed the spatial distribution of the damping coefficient 

not computed from the thermodynamic parameterization 
but are determined by the effective damping rates.

Estimating these parameters is a major challenge in 
enhancing the performance of this system. We employed a 
numerical least-squares optimization method to determine 
the parameters. The optimized parameters of the coupled 
model are estimated by minimizing the root mean square 
error (RMSE) between the model-simulated and observed 
annual indices of the AMO and NAO over 1854–2019.

RMSE =

√√√√ 1
N

N∑
i=1

(AMOsim (ti) − AMOobs (ti))2

+

√√√√ 1
N

N∑
i=1

(NAOsim (ti) − NAOobs (ti))2

where the N  is the number of years and 
ti (i = 1,2, . . . , N) = 1854,1859, . . . , 2019. The RMSE is 
determined by the values of the parameter set.

The initial guesses for the parameters are derived 
from physical and statistical methods. We use the regi-
nal average mixed layer depth h of the North Atlantic 
to obtain cO = ρwcwh = 12.6 W m−2 yr K−1. The 
aA

cO
, aO

cA
, kA

cO
, kO

cA
, bO

cO
, bA

cA
 are estimated through simple linear 

regression, respectively. The time derivative terms are dis-
cretized by using forward difference and regressed onto the 
corresponding variables to obtain the regression coefficients 
as the estimated values. The signal components of the AMO 
and NAO are defined as the indices filtered with a 21-year 
Gaussian low-pass filter and the residuals are the correspond-
ing noise components. The initial guessed parameter val-
ues obtained from the regression are aA

cO
= 0.0333 Kyr−1

aO

cA
= −0.0307 K−1 yr−1, kA

cO
= 5.45 ∗ 10−4 K yr−1,

kO

cA
= 0.0020K−1 yr−1, bO

cO
= −0.0014yr−1, 

bA

cA
= −0.0020 yr−1 bA

cA
= −0.0020 yr−1.

A bounded optimization approach was then employed: we 
sampled the parameter space within adjacent ranges (except 
for setting cO to a fixed value due to a strong physical con-
straint) and integrated the stochastic model for each parame-
ter set. The set of parameters that minimized the RMSE was 
selected as the optimal solution. This method can be viewed 
as a numerical least-squares optimization. The final set of 
determined parameters is: cO = 12.6 W m−2 yrK−1, 
aA = 0.76 Wm−2, kA = 0.88 Wm−2, bO = 0.029 Wm−2 K−1, 
aO/cA = −0.09 K−1 yr−1, kO/cA = −0.32 K−1 yr−1 and 
bA/cA = 0.009 yr−1. Since the NAO index used here is 
dimensionless, cA is a dimensionless non-independent 
parameter. Therefore, the parameters in the NAO equation 
are given combined with cA.
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and atmosphere lead each other, forming a quasi-periodic 
coupled oscillation, whose period is ~ 2(τ1 + τ2). In this 
framework, the stochastic forcing provides the excitation, 
the coupling amplifies the characteristic frequency and the 
damping helps maintaining the steady state, which together 
form the spectral selectivity of the air-sea coupled system.

These frequency selectivity mechanisms describe the cli-
mate system as a spectral filter, where coupled feedbacks 
impose intrinsic frequency constraints rather than merely 
integrating stochastic inputs. We also emphasized the role 
of the damping coefficient, which is influenced by the physi-
cal properties and climatic characteristics of the local sea 
area, in shaping the frequency selectivity. It advances our 
understanding of low-frequency climate variability. The 
study underscores the importance of dynamic interactions 
between ocean and atmosphere providing insights into the 
mechanisms behind oscillatory modes like the AMO and 
NAO. While studies have predominantly attributed multi-
decadal periodicity to AMOC’s advective timescales (Sun 
et al. 2015; Li et al. 2025), our results reveal an alterna-
tive local-scale mechanism governed by mixed layer ther-
mal inertia and surface heat damping that actively shapes 
spectral selectivity. This provides perspective to assess 
future AMO changes under evolving ocean stratification. 

and pointed out that in the North Atlantic region, the smaller 
damping coefficient is an important reason for the formation 
of multi-decadal frequencies. This framework emphasizes 
the importance of mixed layer depth, surface wind speed 
and latent heat damping sensitivity in shaping SST vari-
ability. By incorporating stochastic forcing into a two-com-
ponent coupled model, the quasi-periodic oscillations are 
well simulated. The model captures power spectrum peaks 
at low frequencies, indicating that the air-sea interactions 
and stochastic forcings are important to maintaining oscil-
latory behavior. The stochastic coupled model simulates the 
observed AMO and NAO indices well, matching observed 
characteristics. The modeled power spectrum shows peaks 
at multidecadal time scale.

Collectively, these results establish a mechanism that 
explains the spectral selectivity of air-sea coupled dynam-
ics, as shown in Fig. 7. There are stochastic noise forcings in 
the ocean and atmosphere. This stochastic noise, under the 
influence of physical properties (such as ocean mixed layer 
depth), can form a response with a low frequency response. 
The signal components of the ocean and the atmosphere 
are coupled to each other. The ocean can produce a lagged 
response in the atmosphere lag ~τ1 and the atmosphere, 
in turn, can drive the ocean with a lag ~ τ2. The ocean 

Fig. 5  Observational and simulated 
indices of the AMO (unit: K) and 
NAO (dimensionless) variability. 
a The observed (blue line) and 
simulated (red line) annual AMO 
indices. b As in (a), but for the 
NAO. Both observed indices are 
smoothed with a Gaussian filter 
using a 21-year running window
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coupling strength (aO) or damping timescales (cO/bO) 
which often underlie errors in simulated multidecadal vari-
ability. By moving beyond mere spectral comparisons to 
specific processes, our approach provides feedback for 
refining parameterizations (e.g., surface flux exchanges or 
oceanic mixing), thereby supporting the development of 
more reliable climate projections.

The findings have implications beyond the North Atlantic, 
offering an insight for analyzing coupled variability in other 
ocean–atmosphere systems.

Our analytical framework offers a powerful process-
oriented tool for evaluating general circulation models by 
deriving parameters from observational data and comparing 
them against model-simulated NAO and AMO. This method 
enables diagnosis of biases such as in ocean–atmosphere 

Fig. 6  Stochastic coupled variabil-
ity across centennial to millennial 
simulations. a Numerical solution 
of 5000 years of the stochastic cou-
pled system using the parameters 
from the observation. The initial 
values of signal components are 
set to zero. The stochastic forcing 
is set to white noise. The blue and 
red lines denote the atmosphere 
variable and oceanic variable, 
respectively. b Same as a, but for 
the first 500 years. The signal com-
ponents are plotted to illustrate the 
oscillation. c PSD of the oceanic 
(red solid line) and atmospheric 
(blue solid line) variables in the 
stochastic coupled system. The red 
(blue) dashed lines are the PSD of 
red noise and its critical value at 
0.05 significance level for the oce-
anic (atmospheric) variable (von 
Storch and Zwiers 1999). The PSD 
was computed by Fourier-trans-
forming the sample autocorrelation 
and the maximum lag m = 2000. 
The spectral peaks in c are around 
0.06–0.07 (≈ 2π/105 − 2π/90) 
rad/year. d Lead-lag correlation 
between the signal components 
of the atmospheric and oceanic 
variables. The positive lag denotes 
that the ocean variable leads the 
atmosphere variable. The black 
dashed lines indicate the 0.05 
significance level
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available from the following repositories: Sea surface temperature 
data: NOAA Extended Reconstructed SST Version 5 (ERSSTv5). ​h​t​
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